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ABSTRACT
The rat race between user-generated data and data-processing
systems is currently won by data. The increased use of ma-
chine learning leads to further increase in processing re-
quirements, while data volume keeps growing. To win the
race, machine learning needs to be applied to the data as it
goes through the network. In-network classification of data
can reduce the load on servers, reduce response time and
increase scalability.
In this paper, we introduce IIsy, implementing machine

learning classification models in a hybrid fashion using off-
the-shelf network devices. IIsy targets three main challenges
of in-network classification: (i) mapping classification mod-
els to network devices (ii) extracting the required features
and (iii) addressing resource and functionality constraints.
IIsy supports a range of traditional and ensemble machine
learning models, scaling independently of the number of
stages in a switch pipeline. Moreover, we demonstrate the
use of IIsy for hybrid classification, where a small model is
implemented on a switch and a large model at the backend,
achieving near optimal classification results , while signifi-
cantly reducing latency and load on the servers.

1 INTRODUCTION
Machine learning (ML) is increasingly applied to every aspect
of our lives, leading to huge processing requirements.In data
centers, ML has become a prominent workload [21]. To alle-
viate compute requirements and improve latency-sensitive
applications’ performance, ML is pushed to the edge [13] and
to end-user devices [7]. The performance requirements of ML
have driven the development of a range of ML accelerators,
including GPUs [2], FPGA [6] and custom ASICs [26]. While
state-of-the-art accelerators can run trillions of operations
per second, their throughput is still limited by their network
interface. Network devices offer an untapped resource for
scaling ML, and in particular – classification. The use of
programmable network devices for in-network computing
applications, such as caching [25], consensus [15] and net-
work services [27], provides orders of magnitude throughput
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increase and latency reduction, combined with significant
power savings [50].

CombiningML and networking is not a new trend (e.g. [33]),
withmost of the work focusing onML on the end host. Newer
works had succeeded in creating network-assisted machine
learning, as shown in Figure 1, using network devices either
for aggregation [28, 41], or for feature extraction [5]. Despite
these previous successes, running ML within network de-
vices has proven hard to tackle. While ML accelerators rely
on multiplication and matrix multiplication [26], network
devices do not support such operations. Several works have
tried to attend to this limitation by modifying the data plane
or designing new hardware modules [48, 61].

A few attempts have been made to run ML models within
the network (top of Figure 1), as detailed in Table 4 and §9.
The first class of works [40, 44–46], implemented binary neu-
ral networks on network interface cards (NICs), FPGA or in
a software environment. Their attempts to implement on a
switch-ASIC have failed both in scale and performance, as
it is significantly more constrained in resources and func-
tionality. The second class of works [30, 48, 61] enabled ML
by modifying the hardware or using FPGA. These are ex-
perimental, not off-the-shelf solutions, and can not be easily
and cheaply adopted. The last class of solutions has focused
on implementing Random Forests on switches. These so-
lutions had failed to scale on a switch-ASIC [12] or were
independent of most constraints by running in a software
environment or on a NIC [29, 55]. Harnessing the power
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of network processing for ML within commodity switches
remains a challenge.
To that end, we present IIsy, supporting off-the-shelf pro-

grammable switches (e.g., Intel Tofino) to employ a range
of ML classification methods. IIsy supports decision-tree,
Random-Forest, Isolation-Forest, XGBoost, Support Vector
Machine (SVM), Naïve Bayes and K-Means. IIsy is general-
izable to other classification methods, but does not support
neural network models, to avoid performance compromises.

The design of IIsy follows the following guidelines:
Low-resource ML models ML models vary in types and
nature, requiring complex mathematical operations, unsup-
ported by switch-ASIC, or consume significant resources
(e.g., tree-based models). The scarcity of switch resources
means that not every model mapping will be feasible. Beyond
the need to reserve resources for networking functionality,
some mappings are impractical, such as using features of
hundreds of bytes as lookup keys. Therefore, any model
or class of models requires a tailored mapping to a switch
architecture. We address these challenges in §4.
EasyMLmodel updatesAs over time data changes andML
models need to be re-trained, a quick and easy deployment
of ML models is sought. While switches are programmable,
using them in a production environment means that ideally
the switch’s (P4) program should not be changed, and that
only common operations, such as table updates, should be
allowed. Moreover, the deployment of an updated classifica-
tion model should be quick, and minimize traffic disruption.
These challenges are addressed in §4.
Machine learning performance For classification purposes,
the same level of ML performance, e.g., accuracy and preci-
sion, as running on a CPU or a GPU is targeted. While this is
highly desirable, it is sometimes practical to trade some ac-
curacy for resources, e.g., saving half the memory resources
while giving up 1% of accuracy. To address this challenge, sev-
eral possible in-network ML deployments are listed in §2.2,
and §7 focuses on the hybrid deployment option, offering
competitive ML performance with low-resource in-network
classification consumption.
Feature extraction While packet-header features can be
easily extracted, more complex features are needed to sup-
port many ML models. In PISA-style devices [8] this means
using the parser to extract specific data from the packet, and
the match-action pipeline to turn this extracted data into
a feature and store the information. Additionally, it is re-
quired to process data stored deep within the payload. These
challenges are addressed in §5.
In summary, this paper presents IIsy – a framework for

automated mapping of trained classification models to com-
modity, off-the-shelf, switch ASIC. IIsy generates both data

plane and control plane programs from the output of a com-
mon ML training framework, and does not require any mod-
ifications to tools, network devices, or protocols.

In particular, our main contributions in this paper are:
• Introducing a mapping to programmable network de-
vices of a range of classification methods, including
decision-tree, Random-Forest, Isolation-Forest, XG-
Boost, Support Vector Machine (SVM), Naïve Bayes
and K-Means.

• Presenting a mapping algorithm that is independent
of the number of stages in the switch pipeline, which
is critical for scaling ensemble models.

• Demonstrating feature extraction on packet, flow, ag-
gregate and file granularity.

• Demonstrating IIsy’s usability for in-network classi-
fication using a hybrid model, consisting of a small
model on a network devices, and large model over the
hosts. We demonstrate it can reduce backend’s load,
and reduce the classification latency for time-sensitive
applications.

2 IN-NETWORK CLASSIFICATION
OVERVIEW

2.1 Potential Benefits
Network devices have two major advantages over any other
type of a computing device: location and data-processing
speed. Any cloud-processed user-generated data goes through
the network first. This means that i) the rate of data that
can be processed is capped by the network, ii) the latency
from the user to the processing node will always be higher
than the latency to any network device along its path and
iii) network devices are already part of the infrastructure
carrying user data, and do not need to be newly added. This
leads to the observation that the rate of classification decisions
is bounded by network devices’ data rate.

From a system perspective, in-network computing was al-
ready shown to be beneficial, freeing cycles on the CPU and
providing high power efficiency per operation [50]. Improved
throughput and latency are also known advantages [15, 25],
but need to be considered per use-case. As we show later, in-
network classification can significantly reduce the amount
of traffic that gets to servers, and that requires further pro-
cessing.

Using network devices for in-network ML suggests a few
more benefits. Firstly, being able to classify data before it
reaches the host can be essential for some use-cases. For ex-
ample, distributed denial of service (DDoS) mitigation, where
malicious traffic has to be dropped as close as possible to the
source. Secondly, automatically converting and loading ML
training results to (local and remote) network devices [56],



IIsy: Practical In-Network Classification May 2022, Oxford, UK

can speed up the reaction to events in the network, and
shorten the time for detection and mitigation.

2.2 Deployments Scenarios
In-network classification is possible in different deployment
scenarios, including: (1) a native switch operation, (2) a
switch acting as an endpoint accelerator, (3) smart NICs,
and (4) a hybrid ML model, combining the in-network classi-
fication model with a traditional ML model deployed at the
end-point.

Native switch. A switch in its native usage model has
some, or most, of its resources dedicated to networking op-
erations, meaning that in-network classification needs to be
resource efficient. Using in-network classification within the
switch does not require extra cost or space, and the power
overheads are small [50]. The location of a switch has affects
its benefits; A switch very close to the user is most useful
for data reduction, ultra low latency applications, and to
mitigate the effects of distributed events (e.g., DDoS attacks).
On the other hand, a switch within a data center can support
more complex applications. For example, assuming that the
switch is located after a load balancer, decrypted traffic can
sometimes be assumed [3, 36], allowing to apply in-network
classification to use-cases otherwise prohibited by traffic
encryption.

Endpoint accelerator. The switch as an endpoint accel-
erator refers to using a switch purely for ML purposes. This
model is already in use for some applications, such as load
balancing [11]. Unlike other deployment scenarios, here the
switch adds space, power, and cost overheads.

Smart NIC. Smart NICs support lower bandwidth than
switches but benefit from better resources availability, such
as on-board memory and encryption modules. The host’s
proximity means that the devices see only a subset of the
overall network traffic. Host offloading and power savings
are reduced relative to a switch [50]. Our solution is appli-
cable to architectures like the Portable NIC Architecture
(PNA) [9].

Hybrid. The resource-constrained nature of network de-
vices means that in-network ensemble models are smaller
than full-grown ensemble models, hence their ML perfor-
mance may be sub-par. In such cases, a hybrid ML model
can be used to achieve close to optimum ML performance,
while still benefiting from the performance of in-network
classification. The hybrid deployment scenario employs a
small in-network ML model and a large ML model over the
end-point.

2.2.1 Hybrid Deployments. In many ML ensemble models,
such as Random-Forest and XGBoost, the ML model can
provide a classification with a corresponding confidence
level – the probability that the classification is correct.

In this paper, we adopt the hybrid ML model concept [43,
52], by implementing a small in-network ensemble model
(e.g., by limiting the number of trees in an ensemble, or us-
ing a subset of features [49]), and running a large ML model
at the end-point. To cope with the lower ML performance
of the small in-network ML model, classifications by the
small model are considered valid only if their corresponding
confidence is above a given (high) threshold. Invalid classifi-
cations by the small in-network ML model (i.e., confidence
below the threshold) are forwarded for re-classification by
the large ML model deployed at the back-end.
Previous ML works [43, 52] have shown that most of the

queries in a given data-set can be classified by a small ML
model with high confidence level. Hence, a hybrid ML de-
ployment reduces both the classification latency and the load
over the back-end servers (by forwarding only “hard” queries
for re-classifications), as compared to a monolithic MLmodel
deployment at the back-end. In §7, we demonstrate these
benefits using two use-cases from different domains, cyber-
security and finance.

3 IISY ARCHITECTURE
IIsy is a framework that automatically maps trained classi-
fication models to programmable network devices, and in
particular to off-the-shelf switch ASIC. IIsy takes the output
of a common ML training framework, and converts it to data
plane code and control plane code.
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Figure 2: The architecture of IIsy

The architecture of IIsy, shown in Figure 2, is composed
of four components: machine learning training, mapping
tool to map the trained models to a target network device
(the core of IIsy’s architecture), a data plane implementation
on a hardware target, and a control plane component for
populating table entries.
IIsy’s mapping tool takes a standard ML training output

(e.g., pickle file) and generates from it two components: an
implementation of the data plane, and the entries for the
lookup tables used by the data plane which are loaded by
the control plane. The hardware target and the control plane
component contain standard elements that are target spe-
cific, such as the architecture of the network device (e.g.,
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Tofino Native Architecture, TNA). In the following section,
we present IIsy’s mapping tool in details.

4 MAPPING MODELS TO SWITCHES
IIsy’s mapping of ML classification model to network devices
is guided by several insights [56]:

• Use lookup tables to implement mathematical opera-
tions, for example multiplication and exponents.

• Optimize the use of on-chip resources, and reduce
lookup tables size by using codes or indicators instead
of explicit calculation results.

• Use a lookup tables to decide a classification result at
the end of the pipeline. The key to this table is com-
posed of a set of indicators collected from the previous
stages.

• Be willing to lose some accuracy to save resources.
Decide on the (accuracy) price to pay to fit a model
into your network device, or use a hybrid deployment.

• Break the dependency between tree-depth and pipeline-
stages by looking up values instead of conditions.

• Optimize the use of on-chip resources by sharing fea-
tures lookup tables between multiple trees or models.

In the following, we present our mapping method for
different ML models to a network device. We discuss the
mapping challenges involved with each ML model and the
corresponding mapping solution.

4.1 Decision Tree
Decision-trees naturally fit into network devices, since their
most basic functionality is packet classification – every ingress
packet is assigned to an output port (i.e., class in terms of
ML). To that end, lookup tables are used for classifying pack-
ets to their corresponding output port. For instance, in a
layer-2 Ethernet switch, the feature used for classification is
the destination MAC address, and the MAC table is used to
decide the output port – the classification’s result.
IIsy uses a more efficient mapping of a decision tree to a

network device by using a single table per feature1, and a
single classification table.

IIsy’s mapping is demonstrated using a simple example in
Figure 3. The example shows a decision tree with a depth of
three, with six leaf nodes, and using two features. The color
of each branch in the tree indicates the feature used, with
three branches using feature 1 (𝑓 1), and two branches using
feature 2 (𝑓 2). The branches using feature 1 are mapped to
Table 1, with feature 1 used as the key to the table. The table
has 4 ranges, covering the potential outcomes of branches 1,2
and 4.Each range is associated with a code as the resulting
action. Similarly, Table 2 uses feature 2 as the key, with 3
ranges,corresponding to branches 3 and 5. The action of
1Features are extracted as in §5

this table is a second 2-bit code. While the tables are shown
as exact match, a ternary implementation is possible. The
third table, the classification table, uses as the key the codes
(actions) of Table 1 and Table 2. A match on this key results
in a leaf node, the result of the classification.
Each leaf node is denoted by a code word, and the code

word indicates the branches taken in the tree. This code
word is the result of the feature tables lookup. Therefore the
number of pipeline stages consumed by a decision tree is
independent of the depth of the tree, overcoming previous
limitations [12, 29].

Table size analysis.Assume a tree with 𝐵 branches using
𝐹 features, where each feature 𝑓𝑖 is 𝑤𝑖 bits wide and used
in 𝑏𝑖 branches. The number of entries in a ternary feature
table for 𝑓𝑖 will be 𝑂 (𝑏𝑖 × 𝑤𝑖 ), while an exact match table
will contain all the feature’s values that are possible for the
use case. This number can end up small, as shown in §7.3,
for example if most values are mapped to a default entry.
The number of entries in the classification table depends

on the depth and shape of the tree. The worst case is when
the branches are evenly divided between all features, so
features require the same number of (multiple) bits for the
code. The best case is where 𝐹 − 1 features are used only
once in branches, requiring a single bit code, and the last
feature is used 𝐵 − (𝐹 − 1) times. This can be written as:

2 ⌈log2
𝐵
𝐹
⌉𝐹 ≥ 𝐸𝑛𝑡𝑟𝑖𝑒𝑠 ≥ 2𝐵−1+⌈log2 (𝐵−(𝐹−1)) ⌉ (1)

4.2 Ensemble Tree-Based Methods
Ensemble methods improve ML prediction results by com-
bining multiple learning models [62]. We consider two types
of ensemble methods: Bagging and Boosting.

The size of an ensemble is known to improve a prediction’s
accuracy, which stands in contradiction to the scarcity of
resources on network devices. To attend to this challenge,
we maintain the guidelines presented in §4, such as using
a single table per feature and combining multiple models
within a single table. In this manner, we increase tables’
depth and the amount of metadata used but decouple the
number of trees from the number of stages required in the
device.

Bagging. In bagging, multiple learners are used, and each
learner has an equal weight in the final decision. Each learner
is trained using a different sample with replacement of the
training data. We use Random Forest [10], which is built
from multiple decision trees, as an example of mapping a
bagging model to a network device.

The mapping of a model to a switch is oblivious to differ-
ences between bagging models in terms of training related
parameters such as sample selection and training method.
The mapping is influenced only by the constraints of the
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Figure 3: An Example of a Decision Tree Mapping.

training outcome, e.g., selected features, number and depth
of trees.

While each decision tree in a Random Forest can be inde-
pendently mapped to a device, as in §4.1, this is inefficient.
For example, a Random Forest of ten trees, each using five
features, will require fifty feature tables and eleven decision
actions (one per tree, plus one for the entire forest).

IIsy significantly reduces resources requirements by shar-
ing feature tables between trees. This means that for the
previous example, IIsy will require just five feature tables in-
stead of fifty. This mapping is not free; the number of entries
in each table will increase, as well as the action’s width. The
result of each lookup in a feature’s table is the series of action
codes (as defined in §4.1), one per tree. Trees can be pruned
to create action codes of feasible length. As demonstrated for
a single tree, IIsy requires a table per tree to turn the action
code into the decision of a tree. The classification result of
the entire ensemble is based on the collective classification
results of all trees in the ensemble, and can be implemented
as a table or using a sum and conditions.

Boosting. Boosting methods are different from bagging
[42], as the ensemble is built by training new learners to
focus on misclassifications by previous learners. Gradient
boosting is often built from an ensemble of decision trees,
where a small decision tree (e.g., with 8-32 terminal nodes)
is added at each iteration and scaled by a constant factor.
Then, a new tree is grown to reduce the loss function of
the previous trees. In boosting, new trees are trained with a
focus on previous misclassifications. The decision is based
on the weighted outcome of each tree.

Despite the differences in training, the mapping of a gener-
ated XGBoost model is mostly identical to a Random Forest
(§4.2), using a table per feature, and a table per tree. The
difference is that the leaf nodes are weighted. The weight-
ing can be applied either when constructing the tree table,
which is typically more resource-efficient, or at the decision
stage. When the number of classes is small, it is effective (§7)
to add the weighted results across trees, either directly or

using a lookup tables, and setting the class at the final stage.
Isolation Forests are implemented similarly, but summing
the depth of terminal nodes, rather than their weights.

4.3 Classical models: SVM, Naïve Bayes
and K-Means

Classical classification algorithms can all be mapped using
similar methodologies. These are applied to SVM, Naïve
Bayes and K-Means.A mapping takes one of two forms. The
first holds one table per feature. The result of looking up the
feature in the table is a code, or a value that is normalized. If
the result of a lookup is a code, the last stage in the pipeline
will use a lookup tables with a key of the codes of all features.
If the result of a lookup is a value, then the last stage in the
pipeline will operate on all values, typically adding them up
and comparing the results across classes.
For example, in SVM, the key to a feature’s table is the

feature’s value, and lookup’s result is a vector of calculated
values 𝑎𝑖 ×𝑥𝑖 , where 𝑥𝑖 is the value of the feature (potentially
normalized or binned). The value of an SVM hyperplane,
separating two classes, is calculated as the sum of vectors
from all feature tables. This can be optimized by summing
the features in each pipeline stage.
A second approach, which is not always feasible, holds a

table per class or class indicator. For example, in SVM there
will be a table per hyperplane. The lookup key is the value
all the features. The result of the lookup will be an indicator,
such as if the entry belongs within or outside the hyperplane
(for SVM) or the distance from a center of a cluster (for
K-Means).
Our experience shows that the first approach provides

(relatively) shallow tables, proportional to the number of
classes. However, this approach may experience some loss of
accuracy, explored in §7.7. The second approach is feasible
only when the use of multiple features leads to a feasible key
size and table depth. It provides higher accuracy results and
requires fewer operations at the last stage.
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Clearly, no single solution fits all use-cases. The approach
fits some classification, regression, and clustering models. It-
erative models are less suitable, though they may be feasible,
e.g., using recirculation. Importantly, the framework takes
care that the type of feature or its range will not affect the
accuracy of the classification (e.g., through normalization).

4.4 Retraining and Updates
ML models often need to be retrained and the resulting clas-
sification model needs to be updated. IIsy enables updating a
model deployed on a switch using only table updates, with-
out changes to the deployed program.

For a given use case, a user defines the features that need
to be extracted, the type of the model, and, in the case of an
ensemble model, the constraints on the model (e.g., number
of trees). This leads to a generated P4 program for the net-
work device. As long as the user maintains the constraints,
retraining the model will not change the P4 program. Still,
retraining will result in a different ML model, mapping to
different actions in the features table, and in different code-
to-classification entries in the tree and decision tables (as in
Figure 3). These can be updated by table updates, a common
management operation.

In a hybrid deployment, traffic can be directed to the back-
end during updates, to avoid misclassification.

5 FEATURE EXTRACTION
Network devices are designed to extract headers from pack-
ets. However, the research community has already gone be-
yond packet headers for applications ranging from teleme-
try [27] to in-network computing [50]. In this section, we dis-
cuss how features can be extracted from data on different lev-
els of granularity.Whilewe use PISA and P4-nomenclature[8],
similar concepts apply to other targets.

5.1 Packet & flow level features
Extracting packet-level features is native to network devices,
with packet header extraction done in the parser, and features
are stateless. Such features include, for example, protocol
type or source and destination port number. Packet level
features also refer to features that describe the packet, such
as packet size, switch source port, or timestamp.
Flow level features are stateful, and information is col-

lected and stored across multiple packets. Examples of flow-
level features include flow size, flow duration, and flow data
rate. Heavy hitters detection is one line of research where
flow-level features are already extracted and used [47].
We distinguish between two types of flow-level features:

counted features (e.g., flow size, packets count), and time-
related features (e.g., flow’s start time, inter-packet gap).

5.2 Aggregate level features
Aggregate level features consider a group of flows,an aggre-
gation of traffic (e.g., traffic from/to port 𝑋 ) or the network
as a whole. Examples of features useful for ML purposes
include traffic volume from a group of subnets, inter-arrival
time toward a specific application or a histogram of source
and destination ports. Aggregate level features are mostly
similar in implementation to flow level features, however
they may require additional operations, such as mapping
flow-identifiers to an aggregated-feature identifier.

5.3 File level features
Extracting features from a file is more complex than any
previous case, yet building upon flow-level feature extraction
makes the challenge simpler. We distinguish between four
stages of file processing:
• Start of a file, where file header needs to be processed, and
initial resources need to be assigned. This is similar to a start
of a flow but with a more complex parsing of the header.
• Looking into the file’s payload. If a packet exceeds the size
of the programmable data plane bus, then it may need to be
recirculated (target dependent).
• Examining payload across packets. As a file is likely to be
broken across many packets, extracting features from a file
means that contents at the end of a previous packet need to
be stitched with the contents at the head of the next packet.
• End of file. This is similar to the end of a flow and may
allow to free up some resources.
To be clear, it is feasible to extract data from a subset of

filetypes, not from all file types. Text-based files, such as txt,
xml, html and csv, are straightforward to process. File types
that use many objects, such as docx, pdf and xlsx, are very
hard to process due to the complex structure and required
resources. Certain image file types, e.g., png and tif, or audio
files such as mp3, have a complex file structure and require
significant switch resources, making them impractical. Video
files, composed of frames of images, will be even harder to
process. One exception to image file types is JPEG, which
is relatively easier to process. Extracting a feature from the
JPEG file, such as the average value or the value of a certain
pixel, is possible. However, extracting more complex features
will likely be beyond the resource budget [18].

Handling files raises other concerns. First, we assume that
files are not encrypted (§2.2). Second, privacy and legal rights
to process the data need to be addressed by the operator.
Third, we assume no packet reordering, e.g., direct-attached
SmartNIC or endpoint accelerator. Last, we assume file-type
specific feature extraction.

We focus on two of the challenges raised by file processing:
looking within the packet’s payload and examining payload
across packets. To look deep into the packet, it needs to be
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recirculated, with bytes that were already processed stripped
from the packet. This process is destructive, as the removed
data can not be returned when the processing is done. Fur-
thermore, recirculation can lead to significant bandwidth
loss.

Examining payload across packets2 creates resource chal-
lenges. Assume that you want to access a feature partly
stored in the last two bytes of a packet and partly in the
first 2 payload bytes of the next packet. You need to save
the last 2 bytes of the packet in the memory (e.g., register)
and the amount of data that was saved (i.e. two bytes). How-
ever, this information can be accessed only in a single place
in the pipeline. If the last two bytes were saved at a stage
toward the end of the pipeline, it would not be possible to
extract this data until the new packet reaches this stage. One
solution is recirculation, where the first pass through the
pipeline extracts the missing information, potentially adding
it as metadata or a header. Another solution is to extract
this information in the Ingress pipeline and process it in the
Egress pipeline, but this limits the program’s functionality.
There is a trade-off in functionality, performance, and

resource efficiency when applied to specific file-level use
cases. As previous works have suggested, an easy get away
is to manipulate the file sent at the host’s side before entering
the network so that some challenges can be avoided.

6 IMPLEMENTATION
IIsy’s framework uses four components, as described in §3.
In this section, we describe the implementation of our proto-
type. Further generalization of IIsy’s framework is described
in [59, 60].
The prototype’s machine learning training framework is

based on scikit-learn [37]. Our implementation enables fast
development and prototyping of different models and, in
particular, the hybrid approach. The training of the hybrid
models used scikit-learn 0.24.1 and XGBoost 1.3.3, running
over a c4.8xlarge AWS EC2 instance with 36 vCPUs and
60 GB RAM running Ubuntu 16.04 LTS.

The switch implementation run on two platforms: Intel’s
Barefoot Tofino (ASIC), and NetFPGA-SUME [63](FPGA). All
the models are mapped to both targets, except for boosting,
which targets only Tofino. The NetFPGA implementation en-
ables exploring the limits of feature extraction. This includes
also complex stateful features (§5), such as jitter, inter-arrival
time, and data rate. On Tofino, packet-level, flow and aggre-
gate features are supported, with further focus on files. Data
is extracted from text files, both where the size of a fea-
ture is known (constant) and for unknown feature length
(e.g., words separated by delimiters). Our implementation
currently supports features of up to 15 ASCII characters

2For recirculated packets one can strip data on feature boundaries.

per feature. In addition, it supports features split between
packets and features implemented deep within the packet
(§7.1.2).

The simplicity of the mapping enables to auto-generate
the data-plane and the control-plane, using a python script
and a configuration file. A user defines in a configuration
file design constraints, such as maximum number of trees,
and the tool takes the output of the training stage (pickle
file) and uses it to generate both the data plane (P4 files) and
the control plane (table entries, in json format).

The system test environment uses 64×100𝐺 ports Barefoot
Tofino. P4-NetFPGA [22] is used for FPGA development. Four
servers with 100G NICs are used to send and receive traffic
from the switch. To test full throughput, we use a snake
configuration, where traffic is looped from each port to the
following one, enabling traffic across all 64 ports, which is
a common practice [15]. As a baseline, we measure 6.2Tbps
on the switch when running simple forwarding.

7 EVALUATION
In this section, we evaluate in-network classification for
feasibility, performance, resource consumption and ML per-
formance. For brevity, this section focuses on Intel Tofino,
and details of the NetFPGA evaluation are provided in [57].

7.1 Use cases
Our evaluation is driven by two use cases: network anom-
aly detection using the UNSW-NB15 dataset [35], and time
sensitive financial transactions using the Jane Street Market
Prediction [19]. For each of these use cases, described below,
we explore the classification performance of the switch alone,
as well as part of a hybrid model4.2.

7.1.1 Anomaly detection - Reducing back-end resource con-
sumption. Anomaly detection, such as intrusion detection
and prevention, is typically done at the back-end and can
consume significant compute or acceleration resources [58].
All network traffic toward certain application servers needs
to be examined, and non-human or malicious traffic needs to
be filtered. Our goal is to provide a scalable solution, whereby
normal traffic is allowed in by the switch, and anomaly traf-
fic is either dropped (where all decisions are taken by the
switch) or sent to the back-end (in a hybrid mode). The aim
of the system is to allow in all normal traffic, which is the
majority of traffic volume. In the hybrid mode, traffic that is
classified as anomalous or with low confidence is sent to the
backend for deeper inspection. In this manner, the switch
does not block (drop) legitimate traffic and offloads signifi-
cant processing from the backend, as most traffic is normal.
This use-case is an example where in-network classification
saves resources compared with host-based solutions while
also scaling with the network’s bandwidth.
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To demonstrate this use-case, we use the UNSW-NB15
dataset [35] that contains a mix of normal traffic and different
types of attacks. The goal of the prediction is to detect attack
traffic, which we label “anomaly” in our evaluation.
The use case is explored for the various ML models (§4),

for feasibility study purposes. FromML perspective, Random
Forest is the most suitable for this use-case, as it offers low
variance in its classifications. This leads to a more predictable
fraction of the traffic that is correctly classified as normal
(unless the traffic distribution changes dramatically – which
requires retraining the model).
Our learning uses 80% of the data for training and 20%

for testing. The model running on the back-end is using a
Random Forest of 200 trees (estimators) and 10,000 leaf nodes,
and all the features in the dataset.

7.1.2 Financial transactions - Reducing latency. Low latency
financial transactions, such as algorithmic trading, are very
sensitive to latency. The lower the latency of a transaction,
the higher the potential gain, even with slight reduction in
latency.For top 10% financial traders, the a decision latency
is less than 42 microseconds [4] from a passive order to an
active transaction.
Typically, a large backend is used to provide real time

classification for all transactions. In this case, the switch
can be used to identify and tag high priority transactions,
while other transactions are sent to the backend for fine-
grain classification. The tagged high priority transactions
can be forwarded to a different for immediate execution.
Moreover, tagged queries can be prioritized over a dedicated
link(s), avoiding congestion.While the switchmaymiss some
high-priority transactions, those, in turn, will undergo the
regular classification path. The gain in assigning many of the
time-sensitive requests to a special fast processing path may
introduce significant financial benefits with low resource
consumption. This is an example where the advantage is the
latency of classifying high-priority events, while the change
in the backend’s load is small.

To demonstrate this use-case, we use the Jane Street Mar-
ket Prediction dataset [19], a recent trading finance dataset.
Each trade in this dataset contains 130 anonymized features
representing real stock market data and two output values
(’weight’ and ’resp’) representing the trade’s return. Accord-
ing to these two output values, we label the transactions in
the dataset by recommended actions: ’Strong sell or buy’,
and ’Sell/Hold/Buy’. Financial transactions are typically a
feed of individual trade instructions, arriving from the stock
exchange. Such a feed is not openly available. The Jane Street
dataset is the most recent and open information available
from a trading company, presenting pre-processed transac-
tions.

Our goal is to minimize the latency experienced by trans-
actions marked as “strong or sell” (accounts for ≈13.1% of
the total transactions). We assume the switch is located in
such point in the network that any incoming transaction
must go through it, so any classification by the switch has
an additive latency of close to zero3.

In terms of ML performance, while we evaluate with differ-
ent models, the target for this use case is XGBoost, commonly
used in financial applications as boosting offers a controlled
bias which is more suitable for identifying minority.

Our learning uses 80% of the dataset for training and 20%
for testing. The model running on the back-end is using all
130 features, with XGBoost of 100 trees (estimators) and a
maximum depth of 8 (XGBoost trees tend to be shallow).

7.2 Feature Extraction
In the anomaly detection use-case, we implement on Tofino
support for packet level features (e.g., source and destina-
tion port, protocol, service, and ports equivalence) and flow
level features (e.g., duration, flow size in bytes and packets
in each direction). While flow level features can improve the
quality of the prediction, they cost two stages within the
switch: to hash the flow ID, and to update a register holding
the features value (e.g. flow size). Choosing between the two
options requires weighting also other considerations, such as
if flow ID is needed for “standard” processing purposes. Our
resource consumption evaluation uses the features ’sport’,
’dsport’, ’proto’, ’service’, and ’is_sm _ips_ports’ (Table 1),
and the study of ensemble models (Table 3) uses the fea-
tures ’sport’, ’dsport’, ’proto’, ’service’, ’sbytes’. This is as
the ’sbytes’ feature only improves the performance of the
ensemble models.
The Jane Street dataset contains 130 numerical features,

which we process two ways: either as a packet containing
the features as numerical values, or in its original csv format,
demonstrating the feasibility of file processing. For ease of
exploration we reformat the file as columns of eight charac-
ters, but note that other implementations under this work
are not of fixed size or known delimiter location. Both nu-
merical and csv formats allow to explore feature extraction
from deep within the packet. We succeed in extracting fea-
tures from any of the 130 columns, without recirculation.
The limitation to the extraction is not the location of the
extracted feature, but rather the maximum number of fea-
tures extracted and their size, which are limited by parser’s
resources. As financial transactions are typically a feed of
individual trade instructions (§7.1.2), and the size of an en-
try in the Jane street dataset, with 130 columns, barely fits
within an MTU packet (1522B), we send each transaction as

3Some settings use L1 switches, such as Cisco Nexus 3550. This is a different
use case.
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Model SVM Bayes KMeans DT RF XGB
Tables 5 7 5 6 10 10
Memory 5.7% 15.7% 6.0% 2.5% 9.4% 3.6%
Stages 5 6 6 3 5 4
Latency 34.2% 40.8% 34.6% 33.6% 45.9% 39.4%
F1 0.815 0.846 0.815 0.848 0.848 0.849

Table 1: Anomaly Detection - Resource consumption
of themodels on Intel Tofino, using 5 features. 2 Stages
are required for feature extraction and sending the
packet. Resource Consumption is relative to switch.p4
reference program.

a separate packet. The features that we use are features 42,
43, 45, 124 and 126, demonstrating our ability to look deep
into the data.

7.3 Resource Consumption
We run an exploratory experiment where the goal is to maxi-
mize the performance of the ML prediction, while still fitting
the design within the ingress pipeline. SVM, Naïve Bayes, K-
Means and Decision Tree (DT) fit within the ingress pipeline.
While the Egress pipeline can be used, it is not recommended,
as discussed in §8.

Table 1 and Table 2 summarize the resource consumption
of the anomaly detection and financial transactions imple-
mentations, respectively. The tables show, for each model,
the maximum size of the model that fits within an ingress
pipeline switch using 5 features. The memory and latency
are measured in comparison with Tofino’s switch.p4 refer-
ence design. The number of tables does not directly map to
the number of stages, and can be significantly higher. Our
p4 programs see multiple feature tables mapped to the same
stage.

As the results show, the memory requirements (all SRAM)
are quite low in comparison with switch.p4, despite their
potential to scale. This demonstrates the efficiency of our
mapping algorithm. For Bayes, the results are relatively high
as we maximize the accuracy in our features tables, and as
we use two table to calculate the final probability (multi-
plication). In contrast, SVM and K-Means can have their
results added up, without a decision, which saves significant
resources.

7.4 Scalability
The size of a model that can be fit within a switch depends
not only on the type of the model, but also on the dataset and
its features. This is demonstrated in Figure 4 (a) & (b), which
shows how memory requirements of a decision tree scale
with the number of features for each of the use cases. These
requirements depend on the depth of the feature tables, as

Model SVM Bayes KMeans DT RF XGB
Tables 5 7 5 6 15 9
Memory 1.8% 14.7% 1.7% 12.1% 5.5 % 3.9%
Stages 5 6 6 3 3 3
Latency 27.4% 33.9% 27.7% 32.9% 32.2% 32.2%
F1 0.639 0.696 0.705 0.678 0.884 0.677

Table 2: Financial Transactions - Resource consump-
tion of the models on Intel Tofino, using 5 features. 1
stage is required for sending the packet. ResourceCon-
sumption is relative to switch.p4 reference program.
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Figure 4: Ensemble scaling with the number of fea-
tures.
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Figure 5: The maximum number of features available
in all IIsy’s supported ML models under the financial
transaction use case.

well as on the depth of the decision table. In the finance
use case, all the features are similar, and adding another
feature increases the memory requirements roughly in a con-
sistent manner. In the anomaly detection use case, on the
other hand, features vary significantly in their memory re-
quirement. For example, protocol type requires significantly
less entries than source or destination port. Consequently,
the anomaly detection use case requires less memory than
financial transactions.
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Fitting an ensemble model within a pipeline requires at-
tending to several constraints: available memory (i.e., table
size), number of stages in a pipeline, size constraints on
metadata and lookup keys, and logic resources. The overall
number of tables used is a soft constraint; as parallel look-
ups may happen within the same stage, the overall number
of stages is a stronger constraint.
The difference in the model size that can be fit is demon-

strated in Figure 4. The figure shows the number of trees
that can be fit for each of the use cases, as well as their
depth, depending on the number of features and the type
of memory used (exact match, TCAM or a mix of both). As
the figure shows, using up to 6 features, one can fit up to
20 trees. Increasing tree depth means that fewer trees can
fit within the switch, due to the size of the decision table.
Figure 5 shows the maximum number of features allowed
in the Tofino pipeline under four implementation variations.
Tree models are usually able to utilise more features com-
pare to classical models due to stage sharing. Among these,
the standard DT can fit up to 60 features which is due to
the number of tables constrained per stage. This number of
DT under ASCII implementation is reduced to 30 features,
which is because of the depth limitation the parser can parse
from the payload. As the results in Table 3 show, scaling the
number of trees and features has a limited effect on perfor-
mance, and therefore a smaller switch model may be more
efficient when the hybrid model is possible. While these re-
sults are specific to the switch used, similar constraints exist
on different targets.
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7.5 Baseline Comparison
We compare IIsy with two typical in-network Ml research,
Clustreams and SwitchTree, in terms of resource consump-
tion under financial transaction use case. As shown in Figure

Anomaly Detection, Random Forest, 0.7 confidence
Small Medium Large Baseline

Features 4 5 6 25
Trees 6 10 14 200
Max Depth 4 5 6 —
Accuracy 97.05 97.17 97.78 99.51
Precision 98.06 98.12 98.60 99.67
Recall 88.55 89.04 91.36 99.75
F1 score 92.60 92.94 94.58 98.88
Hybrid Accuracy 98.58 98.94 99.31 —
Hybrid F1 96.64 97.53 98.41 —

Financial Transactions, XGBoost, 0.7 confidence
Features 4 5 6 130
Trees 6 10 14 200
Max Depth 4 5 6 –
Accuracy 72.48 72.65 73.73 77.34
Precision 68.48 68.76 70.05 74.43
Recall 66.51 65.69 68.09 72.76
F1 score 67.16 65.51 68.78 73.43
Hybrid Accuracy 77.31 77.30 77.26 —
Hybrid F1 73.41 73.43 73.40 —

Table 3: Scalability of ensemble models and resulting
ML performance.
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Figure 7: Compare to Baseline - The (R)elative
(Mem)ory and stage consumption of IIsy RF and
SwitchTree RF (Baseline) under three sets of hyperpa-
rameters.

6, to achieve the same accuracy, the IIsy’s K-means algorithm
requires significantly less memory consumption compared
to Clustreams. In Figure 6 (b), compared to the SwitchTree,
IIsy’s DT implementation requires significantly fewer stages
(save 8) with only 5% more relative memory. When it comes
to the ensemble model (i.e. RF), as shown in Figure 7 (a),
with the small model size, IIsy shows merit in controlling
both memory and stage consumption. For the maximum size
available for SwitchTree (Figure 7 (b)), in comparison, with
only 4% more memory requirement, IIsy has a significant
benefit in stage consumption. In the larger model size (Figure
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7 (c)), SwitchTree is unable to map to commodity switches,
however, IIsy is able to map and has excellent control over
resource consumption.

7.6 Throughput and Latency
For both use cases, and for all models, the programs are de-
signed to meet to line rate, with no recirculations or packet
drop. The programs meet Tofino’s timing for a minimum
packet size of 100Gbps per port. For the anomaly detection
scenario, we use UNSW’s pcap traces [35], and for the fi-
nancial transactions, we used the test dataset and send it
over UDP. In both cases, we measure identical throughput to
running the same traces through a simple layer 2 forwarding
program, with no packet drop on any of the switch’s 64 ports.
Observe the throughput of the financial transaction use case,
Figure 8 (a), which shows that the switch implementation
achieves a 25 to 80000-fold throughput improvement over
the CPU implementation.
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Figure 8: Throughput and latency ofML algorithms on
Tofino and CPU under financial transaction use case.

The latency of a design is the number of clock cycles in the
pipeline reported by the switch compiler, compared those
to the switch.p4 reference design. For anomaly detection,
the latency of the mapped models in the ingress pipeline
is between 27.4% and 45.9% of the reference design. This
means that mapping a model to a switch will have a negli-
gible effect on latency if a switch is deployed in its native
usage model (§2.2)4. A switch acting as an accelerator will
add latency to the end-to-end traversal time at the scale of
a microsecond [1]. Compared with the latency of current
financial trading systems [4], as shown in Figure 8 (b), this
will save an order of magnitude in latency. Operating on a
stock exchange feed, the action on a classified packet can be
the actual buy/sell order packet.

7.7 ML performance
We explore the performance of in-network classification for
two scenarios: the classification is done solely in the switch,
and the hybrid model. In the anomaly detection use case, the
dataset is biased, meaning that most of the traffic is normal
traffic. Although SVM, Naïve Bayes, and K-Means achieve a
precision of 0.76–0.91 and F1 score of 0.81–0.85, they classify

4We do not claim to reduce the overall latency of the switch

most of the anomaly traffic as normal. To correctly identify
anomalies, we focus on the ensemble models. In the finance
use case, SVM, Naïve Bayes, and K-Means and achieve a
precision of 0.70–0.73 and F1 score of 0.64–0.71.

4 8 12 16 20 24 28 32
Action Data Bits

10 9
10 7
10 5
10 3
10 1

R
el

at
iv

e 
Er

ro
r (

%
) KM Bayes SVM R-Err R-Mem

1.8
2.1
2.4
2.7
3.0

R
el

at
iv

e 
M

em
 (%

)KM Bayes SVM R-Err R-Mem

Figure 9: Calculation error in SVM, Bayes and K-
Means.

Our implementations of non-tree based models may intro-
duce an error. We study this error on two front: calculation
error and classification error. The calculation error, shown
in Figure 9 for the anomaly detection use case, is the relative
error of a result calculated on a switch (e.g., hyperplane equa-
tion in SVM), compared with the same equation calculated on
a server. While this error is small (less than 0.001%), the more
important result is the misclassification due to calculation
error: zero for SVM and K-Means, and 0.00003% for Naïve
Bayes when action data bits is 16. This error is due to ex-
tremely low probabilities, and is further eliminated by coding
the results of Naïve Bayes calculations, rather than normal-
izing values. Moreover, as shown in Figure 9, the increase
in action data bits has a minor effect in terms of memory
consumption but significantly reduces the calculation error.
Next, we consider the use of a hybrid deployment. The

baseline is the full ensemble model running on back-end
servers. We implement on the switch a smaller model that
classifies a subset of the traffic, where all traffic not classified
or classified with low confidence goes to the back-end as
before. A confidence level is set in the switch to determine the
threshold for classification on the switch. The performance
of the small model, running on a switch alone, compared
with the full model, is shown in Table 3.

Figure 10 (a) shows for the anomaly detection use case
using Random Forest, the fraction of traffic offloaded by the
switch and the correspondingmisclassification rate, as a func-
tion of the switch classification confidence threshold. The
baseline results in a misclassification rate of 0.49%, and F1
score of 0.9888. In comparison, with a confidence threshold
of 0.7, 84.5% of the traffic is handled by the switch, achiev-
ing a misclassification rate of 1.03% and F1 score of 0.976.
These improve as the confidence threshold increases, but the
fraction of traffic handled by the switch decreases. Where
Figure 10 (b) shows a similar result in Financial transaction
use case.

Figure 11 presents the effect of confidence threshold on the
performance of financial transactions use case. Figure 11)(a)
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Figure 10: Fraction of traffic handled by the switch and
misclassification rate.

shows that the XGBoost model running in the back-end,
using 100 trees with a maximum depth of 8, achieves an error
rate of 0.244. In comparison, the hybrid model achieves an
error rate 0.255 with a confidence threshold of 0.5. Increasing
the confidence level to 0.65 reduces the error rate to 0.23.
However, there is a trade-off here, shown in Figure 11)(b):
with a threshold of 0.5, 23.9% of strong buy/sell transactions
are classified by the switch, whereas at 0.66 confidence, only
3.25% of the transactions are classified by the switch. To
put these results in context, consider Figure 11)(c), which
shows the error rate for classifications done by the switch
compared with the error rate for the same transactions, if
done by the host. As the graph shows, transactions that
achieve low confidence (below 0.55) on the switch, are also
more likely (over 30%) to be misclassified by the full-grown
model running on the server. In fact, starting 0.6 confidence
threshold (where 10.8% of strong sell/ buy are being served
by the switch model) the difference in error rate between
the server and the switch is very small, and some traders
may even find that the error difference at 0.54 is still small
enough to provide higher transactions rate for 18.4% of the
transactions.

7.8 Optimizations
The results presented in this section are the output of IIsy.
These results can be further optimized by the user according
to needs, either by changing IIsy’s configurations (in most
cases) or manually (rarely).

The easiest resource optimization for ensemble models is
reducing the number of trees or their depth in the training
stage, thereby reducing ML performance. As demonstrated
in Table 3, in a hybrid deployment, there is a minor added
benefit to usingMedium or Large switch models over a Small
model. This can further be tweaked by changing the confi-
dence threshold, and is configurable.

Memory resources can be saved by binning, i.e. mapping
more entries in the features tables to the same code. This in
turn reduces the size of classification tables and tree tables.
This may lead to loss of ML performance and is controlled
by a configuration.

Overall resources, including both memory and the number
of tables, can also be reduced by combining feature tables,
meaning using as a key to a table the concatenation of multi-
ple features. This currently requires a manual change of one
line in the p4 code and a small change in the mapping tool.

7.9 ML Model Updates
We measure the update time of our ML ensemble models on
a switch. Our assumption is that due to changes in data over
time, the result of the training has changed, but not the type
of the model (e.g., XGBoost) or the constraints used for the
training (e.g., maximum tree depth). The update time varies
based on the size of the model: from 50𝑚𝑠 for a small model,
for several seconds for a large one (Table 3).

8 DISCUSSION
Generalization The focus of this paper is on the methodol-
ogy of mapping ML models to network devices. IIsy uses a
simple data plane, with complexity mainly in the algorithms
mapping from the trained models to table entries. Porting be-
tween targets is straight forward, as was the case in porting
between NetFPGA and Tofino. It requires syntax changes in
the P4 code generator and a script generating control-plane
commands, but not to the mapping tool. Planter [59, 60]
builds upon IIsy to support more models and targets.

Benefits A lesson of this work is that despite resource
constraints, network switches can serve as important classifi-
cation components in hybrid deployments. Saving microsec-
onds (or more) of latency in time-sensitive applications or
reducing back-end servers load by tens of percent, without
adding new hardware to the infrastructure is a key element.
While classification can not be implemented within a fully
utilized switch, our results show that the resource overheads
of adding classification functionality to a switch are practical.

Scope This paper focuses on mapping trained ML models
to network devices. The work does not seek to improve the
quality of training ML models, nor to contribute to a specific
use case. Applying the methodology to certain applications,
such as congestion control, is beyond the scope of the paper.
While the methodology offered in this work is can not be
directly applied to neural networks models, our choice of
ensemble models is because they provide the best results for
the example use cases.

Egress Pipeline Using the egress pipeline is unlikely in
most use cases, as typically the output port is determined
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Figure 11: Latency sensitive financial transactions: The effect of confidence threshold

Project Target Models OTS Const. OA
BaNaNa [40, 44] RMT, NIC BNN ✓ P ✗
N3IC [45, 46] NIC, FPGA BNN ✓ P ✗
Qin [38] bmv2, NIC BNN ✓ ✗ ✓

IOI[61] ASIC NN ✗ — ✗
iSwitch [30] FPGA RL — P ✗
Taurus [48] ASIC DNN, SVM, ✗ ✓ ✗

KM, LTSM
pForest [12] bmv2, ASIC RF ✓ ✓ ✗
SwitchTree [29] bmv2 RF — ✗ ✓
NERDS[55] bmv2, NIC RF ✓ P ?5
Clustreams [17] ASIC KM ✓ ✗ ✗

IIsy ASIC, SVM, KM, NB ✓ ✓ ✓
FPGA RF, XGB, IF

Table 4: A comparison of in-network classification so-
lutions. Legend: OTS - Off the shelf. Const. - Resource
constrained. OA - Open Access. NN - Neural Network.
BNN/DNN - Binary/Deep NN. RF - Random Forest. NB
- Naïve Bayes. KM- K-Means. XGB - XGBoost. IF - Iso-
lation Forest. P - Partial.

in the ingress pipeline. While we explored using an egress
pipeline, it did not improve the scalability of IIsy.

Limitations Some of the limitations discussed in this
work, e.g., the number of tables or features, are property of
the target platform and will change on a different platform.
For example, NetFPGA ismostly limited bymemory and logic
resources, while on Tofino, memory and logic resources are
rarely limiting us, and we are limited by different constraints,
such as the number of stages.

9 RELATEDWORK
The application of ML to network traffic, and in particular
the use of ML for traffic classification, has been of an interest
for a long time (e.g., [14, 33]). Using ML for scheduling and
congestion control (e.g., [16]) was also studied. The focus of
most of these works has been on using ML over traditional
computing platforms.

5The repository linked by the authors is not available at this time

The challenges of ML have led researchers to explore new
approaches to resource constrained ML, using devices of
limited resources [54]. Such approaches are popular with IoT
devices (e.g., [39]). This work focuses on network switches,
which have more resources than some of these devices, and
also much higher processing rate and a different architecture.

A related thread of research is using programmable switches
to accelerate ML frameworks. These works focus on param-
eters servers and in-network aggregation [28, 41] in the
training stage, rather than the classification.
A few works tried to implement ML models within net-

work devices. Implementing binary neural networks was
explored in N2Net [44] and BaNaNa Split [40], with lim-
ited performance benefits. pForest [12], SwitchTree [29] and
NERDS [55] explored mapping random forests, with only
pForest attempting ASIC implementation. Their method-
ology is different, encoding each decision tree in separate
tables, with a table for every tree level, achieving lower scal-
ability (e.g., depth of 4 in pForest). Li [30] added an acceler-
ation module within a switch for reinforced learning, and
Taurus[48] suggested adding a map-reduce module. Taurus
did not report ML performance results for the models sup-
ported by IIsy. IIsy’s use of unmodified network devices is
complementary to these works.
Using programmable network devices for anomaly de-

tection was explored both at the host side [58] and within
switch-ASIC (e.g., [31]). Our work is orthogonal to these non-
ML based efforts, as it enables ML based anomaly detection
solutions (e.g., [23]) to be migrated to the network.

ML for financial transactions has been widely researched,
with XGBoost and SVM often used [51]. Acceleration of
financial transactions has mostly focused on the back-end,
e.g. using FPGA [53]. The closest programmable switches
project is the publish-subscribe system [24], for the NASDAQ
Market data feed filter and router.



May 2022, Oxford, UK Zheng, et al.

10 CONCLUSION
The toll of running ML workloads is high. In this paper, we
have made the case for in-network classification. By map-
ping multiple ML models, including ensemble models, to
off-the-shelf network switch, we have demonstrated the fea-
sibility and benefits of running classification within network
devices.

This paper complies with all applicable ethical standards
of the authors’ home institution.
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A MAPPING MODELS - ADDITIONAL
INFORMATION

A.1 SVM
Support vector machines (SVM) use hyperplanes to separate
between classes, where the output of the training stage is
the equations of the hyperplanes , such as:

𝑎1𝑥1 + 𝑏1𝑥2 + ...𝑧1𝑥𝑛 + 𝑑1 = 0
𝑎2𝑥1 + 𝑏2𝑥2 + ...𝑧2𝑥𝑛 + 𝑑2 = 0

...

𝑎𝑚𝑥1 + 𝑏𝑘𝑥2 + ...𝑧𝑚𝑥𝑛 + 𝑑𝑚 = 0
where 𝑥𝑖 is the value of feature i, 𝑛 is the number of fea-

tures, 𝑘 is the number of classes and𝑚 = 𝑘 ∗ (𝑘 − 1)/2.
There are two ways to map SVM to a network device. First,

to hold a table per feature, and second, to hold a table per
hyperplane. A table per feature means that the key to a table
is the feature’s value, and the output of the lookup is a vector
of calculated values 𝑎𝑖 × 𝑥𝑖 . The value of each hyperplane
is calculated as the sum of vectors from all feature tables,
and a decision is taken. This can be optimized by adding up
the features in each pipeline stage. A table per hyperplane

features = feature1 ++ feature2 … ++ featurem

Model

Features HP 1 … HP m
features hp1 … hpm

… … … …
features hp1 … hpm

Code label
hps label

… …

hps label

Switch

hps = hp1 ++ hp2 … ++ hpm

!"# 1,2…( : *+,-*! += 1 0! 1 02 ℎ45-#5*+2- 6

!"# $ !%&'(#%) &$* + ,-&))%),/ = + (+ − 1)/2

+"7" +⋯9"7# + :" = 0
+$7" +⋯9$7# + :$ = 0

…
+%7" +⋯9%7# + :% = 0

Table 1:  Features to Hyperplane Votes Table 2: Label

*+,-* = argmax& (*+,-* &)

Figure 12: Mapping an SVM Model.
means that𝑚 lookup tables are used, one per hyperplane
and the outcome of the lookup indicates on which side of
a hyperplane is a given input. The key to a table is a set
of features, and the action is a “vote”. A “vote” is a one-bit
value mapped to the metadata bus that indicates if the input
belongs within or outside a hyperplane. The “votes” from all
𝑚 tables are counted in the last stage, and the class with the
highest count of “votes” is the classification result.

The table per hyperplane approach is feasible only when
the concatenation of all features does not lead to a too wide
key. If the features used are, for example, source and desti-
nation port, protocol, and some IP flags, the key will be rela-
tively small, and the solution will be feasible. Theoretically,

the concatenation of all features can yield the classification
within a single table. However, this table is likely to be very
large and less resource-efficient than distributing across a
few smaller tables.

The main advantage of the table per hyperplane approach
is that there is no unintentional loss of accuracy; the output
of the table is a vote, not a value.It is possible to purposely
lose some accuracy, e.g., if one wants to reduce the number of
table entries by merging multiple ranges of different “votes”
into a single entry (e.g., if keys 0-1111 and 1113-32767 are
mapped to class 1, and key 1112 to class 2). In contrast, a
solution using a table per feature may lose some accuracy, as
the result of a lookup is a calculated value (and not a code),
which has an accuracy limited by its number of bits. The
final classification decision may not be affected by the loss
of accuracy in calculations along the pipe, but this is not
guaranteed.

Using a table per feature will still be favored in some cases,
e.g., if working with eight features, each of eight-bit, so each
table is only (and at most) 256 entries deep, and features can
be looked up in parallel. The table per hyperplane equivalent
will be multiple (𝑚) tables of a 64-bit key.

Features !"! … !""
feature1 xa1 … xam
… … … …

feature1 xa1 … xam

#$%&# = argmax# (#$%&# #)

Switch

Model
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Table 1 to Table n:  Features 1 to Feature n to polynomial components

Features !E! … !E"
featuren xz1 … xzm
… … … …

featuren xz1 … xzm

…

Figure 13: Mapping an SVM Model (Second Option)

A.2 Naïve Bayes
For a Naïve Bayes classifier [32], we assume a Gaussian distri-
bution of independent features [20]. Similar concepts apply
to related methods, such as kernel estimation [33]. Under
this assumption, the likelihood of feature 𝑥𝑖 is expressed as:

𝑃 (𝑥𝑖 |𝑦) =
1√︃
2𝜋𝜎2𝑦

𝑒𝑥𝑝

(
−

(𝑥𝑖 − `𝑦)2

2𝜎2𝑦

)
And the classification rule is:

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 (𝑦)
𝑛∏
𝑖=1

𝑃 (𝑥𝑖 |𝑦)
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If there are 𝑛 features and 𝑘 classes, there are 𝑘 × 𝑛 pairs of
(`𝑦, 𝜎𝑦).

Features Class 1
features prob1

… …
features prob1

Table 1:  Class 1 Probability Table k:  Class k Probability

…
Switch

Model

Bayes all features

*+,-* = argmax) I(4)J

*+"

#
5(7*|4)

5(7*│4) =
1

2LM)$
-75(−

7* − O)
$

2M)$
)

*+,-*
features = feature1 ++ feature2 … ++ featurem

Features Class K
features probk

… …
features probk

*+,-* = argmax& I&

Figure 14: Mapping a Bayes Model

A mapping based on a table per feature is possible but
can be both inefficient and inaccurate. Here, the result of
each feature-value lookup will be a vector of probabilities.
As the number of bits per vector is limited, there will be
some accuracy loss. Even if the target allows for any vector
length and a fixed point notation is used, the amount of
metadata that needs to be carried between stages will be
higher than other solutions, and depending on the number
of features and classes, exceeding allowed resources. In this
approach, each class will require a table at the end of the
pipe to calculate its overall probability, bringing the overall
number of tables required to 𝑂 (𝑛 + 𝑘). Unless there is a
compromise on accuracy, the number of entries in each such
table will be large, as the key is the concatenation of all
probabilities per class. Finally, at the end of the pipeline, a
comparison is required to find𝑚𝑎𝑥𝑦𝑃 (𝑦).
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Figure 15: Mapping a Bayes Model (Second Option)

B MAPPING MODELS - ADDITIONAL
INFORMATION

A better approach is to use one table per class, with all the
features as the key, and with the result being the probability
of that class. The disadvantage is the size of the required
table: it uses a very wide key (a form of a concatenation
of all input features values), and its depth is proportional
to this width unless a compromise is made for accuracy.
The resulting probability does not need to be presented as a
fraction, and an integer value can be used that symbolizes
the probability. As long as the same notation is used across
all tables, the final comparison of 𝑃 (𝑦) and the classification
result will be correct. Figure 14 in Appendix A illustrates
this implementation.

B.1 K-Means
An example of unsupervised learning mapped to a network
device uses K-means clustering. In K-means, 𝑘 classes are
represented by 𝑘 centers of clusters, with each center defined
by 𝑛 coordinate values, one per feature. A data point will
be mapped to a class based on its nearest center of a cluster.
The distance from cluster 𝑖 is denoted by:

𝐷𝑖 =

√︃
(𝑥1 − 𝑐𝑖1)2 + (𝑥2 − 𝑐𝑖2)2 + ..(𝑥𝑛 − 𝑐𝑖𝑛)2

where 𝑥1 to 𝑥𝑛 are the values of the data point’s features. Ob-
viously, to find the nearest cluster, it is sufficient to consider
the square distances.
As in previous examples, there are two ways to map the

model to a network device. One option is using a table per
feature, with the lookup’s result of table 𝑖 being a vector of
{(𝑥𝑖 − 𝑐1𝑖 )2, (𝑥𝑖 − 𝑐2𝑖 )2, ..., (𝑥𝑖 − 𝑐𝑘𝑖 )2}. Here, the last stage will
need to sum up all 𝐷𝑖 and find the smallest one6. As before,
the challenges here are the accuracy of the calculation and
the width of the required metadata bus.
The second approach uses a table per class, with the key

being the concatenation of all features (presenting a chal-
lenge of key width). The result of each such table lookup is
the distance of the data point from the center of the cluster.
As proposed above, this distance can be consistently repre-
sented by an integer value across all tables, allowing for easy
comparison and selection at the last stage. The approaches
are illustrated in Appendix A.

C FEATURE EXTRACTION ON NETFPGA
Using our implementation on NetFPGA, we explore the fea-
sibility of implementing the full range of features included
in the UNSW dataset [34], regardless of their contribution
to the Random Forest model’s performance.

6Values can also be summed up in each stage.
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The dataset includes 47 features, which we categorize into
three groups according to their implementation complexity,
with a fourth group including with unclear description. We
classify 11 features as easy, 15 features as medium complexity
and 18 features as hard or impossible to implement on a
switch. Three more features are unclear. Out of these, we
implement 15 features on NetFPGA.

In general, easy features are stateless, though some require
operating on the data, e.g., comparison. All the features im-
plemented under this class are packet-level features.
The medium level features are stateful, and include both

counted and time related flow level features. Among the
features that we implement under this category we include
flow duration, flow record start time and last time, packet
inter-arrival time, packets loss per flow, and data rate (bits
per second). For the data rate, we use both flow duration and
a counter of bytes per flow, and estimate data rate by the
ratio of byte per flow to duration. The most complex feature
implemented is jitter, where we use an multiple bins to store
packets inter arrival time per flow, and consider the number
of packet in each bin according to the classifier.
The hard to impossible features require tracking state

machines, and information that is not available on the switch.

The implementation that supports all features uses 13 ex-
terns in total, where some of the extrens are used by more
than one feature (with a single access in the pipeline). The
types of externs use are hash, read/write memory (equiv-
alent to registers) and read-modify-write memory (atomic
operation). The types of externs available on NetFPGA are
described in [22].
Extracting a jitter feature illustrates the complexity of

some flow-level features. The jitter feature, in the context of
this example , considers the difference in inter-arrival time
between packets of the same flow. As a new packet arrives, its
flow-identifier fields are extracted in the Parser, and an extern
(e.g., timestamp mechanism) is used to get the arrival time. A
hashing function turns the flow identifier fields into a flow-
id. These steps are common in non-ML use cases. Next, the
previous arrival time in the flow is read from a memory, and
replaced with the new timestamp (e.g., using read-modify-
write). The difference between the current and the previous
arrival time is the inter-arrival gap. To account for the jitter,
bins can be used, e.g., number of packets with less than 1ms,
1ms to 10ms, or more than 10ms inter-arrival time. Each bin
requires a per-flow entry in the memory. Given 𝐾 flows and
𝑁 bins means that the jitter feature will required 𝐾 × (𝑁 + 1)
memory entries.

D RELATEDWORK - EXTENSION
Figure 19 illustrates the positioning of IIsy’s contribution
relative to the works listed in Table 4. As the figure shows,
IIsy is the only work to present a generic solution for a range
of ML methods.
While multiple works have considered Random Forest,

they focused on bmv2 and smart NICs. pForest has also
focused on bmv2, and presented a non-optimized implemen-
tation on Tofino with a depth of 4, significantly less than
IIsy. Solutions such as [29, 55] did not attend to resource
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Figure 18: Mapping an XGBoost Model.

constraints, and don’t scale as well as IIsy. Even in the bmv2
implementation, SwitchTree [29] was studied with only 5
trees and depth of 10, where each tree is coded independently.

While Taurus supports SVM and KMeans, it is not possible
to compare to it, as it did not report ML performance results
for these models. Moreover, it relies on a modification to the
silicon design.
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Figure 19: The positioning of IIsy

E TEST SETUP
Our system test environment uses APS-Networks BF6064X,
an Intel Barefoot Tofino platform with 64× 100𝐺 ports. Bare-
foot’s SDE 9.2.0 is used on the switch, and we further exper-
iment with SDE 9.6.0 in the software development environ-
ment. P4-NetFPGA [22] with SDNet 2018.2 compiler is used
for the FPGA development.

ESC4000A-E10 servers using AMDEPYC 7302P CPUs with
256GB RAM, Ubuntu 20.04LTS, and equipped with Mellanox
ConnectX-5 100G NICs are used to send traffic to the switch

using DPDK 20.11.1 and PktGen 21.03.0. Four CPU cores are
dedicated per port.
To test full throughput, we use a snake configuration,

where traffic is looped from each port to the following one,
enabling traffic across all 64 ports, which is a common prac-
tice [15]. A set of python scripts is used to generate, capture
and check traffic. As a baseline, we measure 6.2Tbps on the
switch when running simple forwarding.

In this section we include additional illustrations of map-
ping different machine learning models to network devices.
The methodology of mapping these models is described in 4.


	Abstract
	1 Introduction
	2 In-Network Classification Overview
	2.1 Potential Benefits
	2.2 Deployments Scenarios

	3 IIsy Architecture
	4 Mapping Models to Switches
	4.1 Decision Tree
	4.2 Ensemble Tree-Based Methods
	4.3 Classical models: SVM, Naïve Bayes and K-Means
	4.4 Retraining and Updates

	5 Feature Extraction
	5.1 Packet & flow level features
	5.2 Aggregate level features
	5.3 File level features

	6 Implementation
	7 Evaluation
	7.1 Use cases
	7.2 Feature Extraction
	7.3 Resource Consumption
	7.4 Scalability
	7.5 Baseline Comparison
	7.6 Throughput and Latency
	7.7 ML performance
	7.8 Optimizations
	7.9 ML Model Updates

	8 Discussion
	9 Related work
	10 Conclusion
	References
	A Mapping Models - Additional Information
	A.1 SVM
	A.2 Naïve Bayes

	B Mapping Models - Additional Information
	B.1 K-Means

	C Feature Extraction on NetFPGA
	D Related Work - Extension
	E Test Setup

